Template by:
Free Blog Templates

Selasa, 30 Maret 2010

news update

31 Maret 2010 | 01:51 wib

Stasiun Kereta Bawah Tanah dibuka Kembali

Moskow, CyberNews - SETELAH ditutup hampir sepanjang hari, kedua stasiun yang dibom dibuka kembali, Selasa, kata Veronica Molskaya, juru bicara Kementerian Keadaan Darurat Rusia. "Penilaian awal kami adalah bahwa tindakan teror ini dilakukan oleh kelompok…

31 Maret 2010 | 01:02 wib

Polisi Rusia Merilis Tersangka Bom Bunuh Diri

Moskow, CyberNews - SELASA , Polisi Rusia merilis foto dua perempuan yang diduga sebagai pelaku bom bunuh diri yang menewaskan sedikitnya 39 orang di metro Moskow sehari sebelumnya. Juru bicara polisi Moskow Viktor Biryukov, mengatakan, aparat keamanan…

31 Maret 2010 | 00:25 wib

Mesin Pencari Google di Cina "Blank"
image

Beijing, CyberNews. Pengguna internet di Cina, Selasa (30/3), melaporkan bahwa mereka telah gagal dalam mengakses situs Google internasional. Hal ini memicu kekhawatiran bahwa mereka dalam pemblokiran Pemerintah."Mesin pencari" internet dari Amerika…

Minggu, 07 Maret 2010

Macam macam arus listrik

Bila kita akan memulai membahas yang berkaitan dengan bidang elektronika, maka hal ini tidak lepas kaitannya dengan bidang pengetahuan listrik dengan segala permasalahan, baik yang menyangkut komponen-komponen listrik, parameter listrik, istilah-istilah listrik dan symbol listrik.

Listrik sendiri sebenarnya tidak dapat kita lihat dengan mata kepala, tetapi gejala listrik dapat kita lihat dalam kehidupan sehari-hari. Kita dapat mengetahui adanya listrik itu misalnya: adanya penerangan listrik dirumah-rumah, yang listriknya berasal dari sumber listrik yang dihasilkan oleh pembangkit listrik yang dikelola oleh Perusahaan Listrik Negara (PLN). Gejala adanya listrik juga dapat kita lihat pada lampu penerangan yang dipasang pada kendaraan bermotor dimana sumber listriknya berasal dari battery atau accu (acumulator), selain dari pada itu gejala listrik dapat pula kita lihat dari peralatan yang menggunakan listrik misalnya: radio, kipas angin, setrika dan yang lainnya. Dengan demikian sebenarnya gejala listrik itu dapat kita jumpai dalam kehidupan sehari-hari dan bukan merupakan hal yang aneh.

5.1.1 Macam-macam arus listrik

Pada dasarnya kita mengenal dua macam arus listrik yang dihasilkan oleh sumber listrik, yaitu:

5.1.1.1 Listrik arus bolak-balik (AC).

arus bolak-balik atau dalam bahasa bakunya disebut Arus AC atau Alternating Current. Pada umumnya listrik arus bolak-balik ini banyak dipergunakan dalam kehidupan sehari-hari misalnya sebagai penerangan rumah dan keperluan rumah tangga lainnya seperti menjalankan kipas angin, setrika, dan lain-lain.

Listrik arus bolak-balik ini dihasilkan oleh sumber pembangkit tegangan listrik yang dinamakan Generator Arus Bolak-balik yang terdapat pada pusat-pusat pembangkit tenaga listrik.

Pada umumnya tegangan listrik yang dipergunakan untuk keperluan umum sudah distandarisasi secara nasional yaitu 110V dan 220V/AC dengan frekuensi sebesar 50Hz.

Perlu diperhatikan bahwa tegangan listrik baik yang 110V maupun 220V/AC selain berguna bagi manusia, juga sangat berbahaya apabila memperlakukannya kurang hati-hati, hindari jangan sampai aliran listrik tersebut tersentuh oleh tangan apalagi oleh anak-anak.


Dengan perkembangan teknologi elektronika saat ini, listrik arus searah dapat dihasilkan dengan cara merubah arus bolak-balik (AC) menjadi arus searah (DC) dengan menggunakan suatu alat yang disebut power supply atau adaptor, pada perangkat accesoris handphone akan dapat di temui alat traffo charger, yang digunakan untuk mengisi battery handphone.


5.1.1.1 Listrik arus searah (DC).


Arus searah atau dalam bahasa bakunya disebut Direct Current atau Arus AC. Kalau kita perhatikan lampu penerangan yang terdapat pada kendaraan bermotor, sumber listriknya tidak lain berasal dari battery atau akumulator (accu).

Battery adalah termasuk sumber listrik yang dapat menghasilkan tegangan listrik arus searah (DC).

Dengan perkembangan tekologi elektronika saat ini, listrik arus searah (DC) dapat dihasilkan dengan cara merubah arus bolak balik (AC) menjadi arus searah (DC) dengan menggunakan suatu alat yang disebut dengan power supply atau adaptor, alat ini fungsinya sama denga trafo charger yang terdapat pada handphone.

Salah satu dari rangkaian power supply ini adalah seperti pada gambar berikut ini:


5.1.1 Arus dalam rangkaian


Arus listrik adalah muatan listrik yang bergerak di dalam sambungan atau dalam komponen. Seandainya arus yang keluar dari suatu tempat lebih kecil dari pada arus yang masuk ke tempat itu, maka muatan ditempat itu akan terus bertambah banyak. Tetapi hal ini tidak mungkin terjadi karena arus listrik yang masuk ke satu tempat selalu akan keluar dari situ juga. Arti dari hukum fisika ini untuk suatu rangkaian bisa di uraikan sebagai berikut: kalau ada rangkaian seri, berarti tidak ada percabangan dalam aliran listrik maka arus selalu sama pada setiap bagian dari rangkaian seri itu. Kalau ada titik percabangan yang mana aliran arus bercabang dalam suatu rangkaian, maka jumlah arus yang masuk kedalam titik percabangan itu selalu sama dengan jumlah arus yang keluar dari titik dari percabangan itu. Misalnya terdapat rangkaian seperti dalam gambar dibawah ini.


Arus I 1 masukl ke dalam P1 dan arus I 2 dan I 3 keluar dari poin P1, maka I 1 = I 2 + I 3. kalu arus yang masuk kedalam suatu titik di hitung positif dan yang keluar di hitung negatif, maka jumlah arus pada setiap titik dalam rangkaian selalu nol. Dengan difinisi ini contoh titik P1 dihitung: I 1 + I 2 + I 3 = 0.

Hal ini disebut sebagai hukum kirchoff.

Dengan memahami kedua hukum kirchoff di atas dan mengerti sifat dari komponen yang ada dalam suatu rangkaian komponen maka semua rangkaian elektronik bisa di selidiki. Dalam pasal 3 beberapa contoh rangkaian akan di bahas dengan memakai kedua hukum kirchoff.

Hukum OHM

Berdasarkan percobaan, bila antara 2 buah titik yang di hubungkan dengan sebuah kawat penghantar terdapat beda tegangan (E), maka akan mengalir arus listrik (I) yang mengalir melalui kawat penghantar tersebut.


Banyaknya arus yang mengalir pada kawat penghantar tersebut tergantung dari beda tegangan antara ke 2 titik tersebut. Makin besar beda tegangan antara titik A dengan titik B, maka makin besar pula arus yang akan mengalir pada kawat penghantar tersebut.

Besarnya arus yang mengalir pada kawat penghantar, selain tergantung dari besarnya beda tegangan juga dipengaruhi oleh:

ü Besar kecilnya diameter atau garis tengah dari kawat penghantar.

ü Jenis dari kawat penghantar.

Besar kecilnya arus listrik di ukur dengan satuan ampere atau disingkat A dan notasinya dituliskan dengan huruf I.

Nama Ampere diambil sebagai tanda penghormatan terhadap seorang sarjana Perancis yang bernama Andre Marie Ampere (1755-1836).

Pada percobaan rangkaian elektronika pada umumnya kita akan menghubungkan dengan penggunaan arus listrik yang ukurannya relative kecil, sehingga untuk menuliskan nilai arus yang kecil tersebut diperlukan satuan yang lebih kecil dari ampere (A)

Satuan yang lebih kecil dari ampere adalah

2 mili Ampere =1ma = 0,001A =10-3A

1 micro Ampere = 1 uA =0,000.001 = 10-6 A

Dari hasil percobaan di atas ternyata kuat arus (I) berbanding langsung dengan beda tegangan (E), sehingga hasil bagi dari beda tegangan (E) dan arus (I) merupakan suatu bilangan tetap. Bilangan ini merupakan suatu tahanan dari kawat penghantar yang dilalui arus tadi.

Besar kecilnya tahanan dapat di ukur dengan satuan Ohm dan tahanan sendiri di tuliskan dengan notasi R.

Berdasarkan hukum Ohm, hubungan antara tegangan listrik, arus listrik dan tahanan listrik dapat dibuat persamaan sebagai berikut:

Timbulnya perbedaan antara tegangan yang terjadi pada percobaan di atas di sebabkan karena adanya tekanan dan perlawanan dari adanya perpindahan electron-elektron yang berpindah dari kutub negative ke kutub positif yang mengalir pada kawat penghantar tersebut.

Besar kecilnya tegangan listrik dapat diukur dengtan satuan Volt atau disingkat V dan notasinya dituliskan dengan huruf E.

Nama satuan Volt diambil sebagai tanda penghormatan yang diberikan terhadap seorang sarjana Italia yang bernama Alesandro Guiseppe Antomio Volta (1766-1857) yaitu sebagai penemu elemen Volta.

Perlu diketahui bahwa pada umumnya pembangkit tegangan listrik masa kini dapat menghasilkan tegangan listrik dalam jumlah yang sangat besar, yang ukurannya kadang-kadang sampai mencapai berjuta-juta Volt dan ini tentunya untuk menuliskan angka sebesar itu harus dituliskan dengan satuan listrik yang lebih besar dari Volt.

Satuan yang lebih besar dari Volt adalah:

1 kila Volt = 1 KV = 1.000 V = 103 V

1 mega Volt = 1MV = 1.000.000 V = 106 V

Dan sebaliknya pada percoban-percobaan elektronika kadang kala kita akan berhubungan dengan tegangan listrik yang nilainya lebih kecil dari satuan Volt.

Satuan yang lebih kecil dari Volt adalah:

1 mili Volt = 1 mV = 0,001V

1 micro Volt = 1 uV = 0,000,001 V

1 micro-micro Volt = 1 uuV = 0,000.000.000.001 V

Untuk mengukur ketiga besaran arus listrik di atas yaitu tegangan listrik, arus listrik dan tahanan listrik dapat dipergunakan sebuah alat ukur listrik yang dinamakan Avometer/multi meter.

5.1.1 Pengenalan Signal

5.1.1.1 Signal Analog.

Energi elektrik (arus atau gelombang ) dapat menyimpan informasi jika dibuat dalam variasi tertentu dan satuan waktu tertentu pula (disebut intensitas). Variasi energi elektris tersubut diberi istilah dengan sinyal (signal). Sinyal tersebut dibagi menjadi dua jenis, yaitu analog dan digital. Gelombang sinus adalah contoh sebuah sinyal analog. Gelombang ini dapat mengalir melalui kabel ataupun udara, variasi gelombang sinyal sinus (intensitas) dapat anda lihat pada gambar dibawah ini:


Di dunia radio Frekuensi (RF) intensitas dari signal dapat diukur kekuatannya. Waktu yang dibutuhkan sinyal hingga menyelesaikan sebuah gelombang (dari A hingga E), dalam satu detik disebut frekuensi (diukur dalam Hertz disingkat Hz).

5.1.1.1 Frekuensi

Konsep frekuensi ini adalah kunci dalam memahami radio frekuensi (RF), sebab RF

Adalah frekuensi-indefenden. Hal ini dapat digunakan untuk membedakan antara dua signal yang berbeda frekuensinya sehingga frekuensi dapat digunakan untuk memagi satu sinyal dengan sinyal yang lain sesuai dengan kegunaannya. Anda dapat membandingkan beberapa tingkatran frekuensi dalam Hertz dan terapan praktisnya dalam kehidupan manusia pada table dibawah ini:

Frekuensi dalam Hertz

terapan

60

2,000

530,000

54,000,000

88,000,000

746,000,000

826,000,000

1,850,000,000

2,400,000,000

2,500,000,000

4,200,000,000

9,000,000,000

11,700,000,000

28,000,000,000

500,000,000,000,000

1,000,000,000,000,000,000

Outlet elektrik

Suara manusia

AM radio

TV channel 2 (VHF)

FM radio

TV channel 60 (UHF)

Ponsel

Telepon pcs

Wireless LAN

MMDS

Parabola satelit ukuran besar

Radar

Parabola satelit kecil

LMDS

Cahaya terlihat

X-files

Tabel frekuensi

Dalam menggambarkan frekuensi dengan angka ternyata begitu menguntungkan, karena sangat sulit diingat dibentuklah range-range frekuensi untuk mempermudah mengingatnya. Range frekuensi inilah yang disebut dengan Band. Beberapa definisi dan range band ini dapat anda lihat pada tabel dibawah ini:

Band

Frequency Range

L-BAND

S-BAND

C-BAND

X-BAND

Ku-band

1.0-2.0 GHz

2.0-4.0 GHz

4.0-8.0 GHz

8.0-12.0 GHz

12.0-18.0 GHz

5.1.1.2 Signal Digital

Type lain dari sinyal elektrik adalah sinyal digital, yang mempunyai tipe yang sama seperti di lingkungan computer. Tidak seperti pada sinyal gelombang sinus yang mempunyai perbedaan yang gradual antara titik tertinggi dengan titik rendah, pada sinyal digital variasi terjadi antara nilai sinyal satu dengan yang lain sehingga hanya ada dua nilai dalam sinyal digital, yaitu tinggi dan rendah. Sinyal digital akan mempresentasikan informasi pada pola tinggi dan rendah. Pola tinggi dan rendah ini digunakan untuk merepresentasikan suara pada teknologi telepon selular.



3.4 Mengubah sinyal suara menjadi sinyal digital

Saat manusia mengeluarkan suara akan menghasilkan tekanan akustik yang dapat merambat di ke kabel telepon. Sebagai contoh, dengan membuat vibrasi, akan menyebabkan gelombang suara akan merambat dari ujung satu ke ujung ahir dari satu tempat ke tempat lain. Telepon, akan mereproduksi suara dengan menggunakan listrik atau benda elektrik pada jarak tertentu yang terdiri dari peralatan pemancar dan penerima gelombang yang saling terkoneksi dengan kawat atau kabel yang akan menyampaikan arus listrik.

Diagram di atas memperlihatkan system transmitter telepon analog yang menyebabkan diagfragma (lembaran metal yang tipis) akan bergetar atau bervibrasi bervariasi sesuai dengan arus elektrik yang mengenainya. Arus naik dan turun yang berulang menyebabkan diagframa penerimaan bervibrasi dan mereproduksi suara aslinya.

Pada teknologi wireless, kode0-kode di dalam telepon mobile ini akan melakukan konversi dari suara ke denyutan digital pada sisi pemancaran. Pada sisi penerima akan melakukan konversi dari denyutan digital kembali menjadi analog. Coder atau Vocoder adalah penganalisa suara dengan sebuah sintetizer. Vocoder dalam setiap telepon digital wireless adalah berupa chip set yang disebut dengan prosesor sinyal digital (DSP). Sura akan dimodelkan dan ditransmisikan oleh analyzer sebagai dari Vocoder. Pada saat diterima, synthesizer akan menginterpresentasikan sinyal dan mereproduksi pendekatan yang sesuai dengan suara aslinya.

Suara normal musik, nada, dan semua sinyal analog akan dsikonversikan oleh telepon menjadi gelombang elektris. Gelombang elektris ini di analogikan pada suara. Suara akan mempengaruhi sirkuit telepon, secara elektronis akan merepresentasikan suara menjadi gelombang elektromagnetik yang terus menerus. Transmisi dari sinyal analog terkadang terkena distorsi. Akan tetapi, didalam system digital permasalahan tersebut telah diatasi.

Sinyal digital adalah representasi secara sistematis dan numeric dari suara, pada setiap suara akan ditangkap sebagai angka biner.

Reproduksi suara akan sangat mudah dilakukan dengan memberikan kode-kode dalam bentuk penomoran digit. Terdapat skema yang berisi error atau kesalahan unatuk dapat diteliti dan diperbaiki sehingga link digital di system wireless tersebut akan selalu utuh. Untuk mengurangi bandwith, data signal dapat dilakukan pemampatan data atau kompresi

Intalasi Listrik Rumah Industri

Hal yang berkaitan dengan instalasi listrik industri :
Pengontrolan
Pengertiannya sih semua usaha yang dilakukan untuk membimbing proses sampe tujuan (kalo di sekolah mirip BK kali yah a.k.a Badan Konseling).
Fungsi dari pengontrolan :
>start
>waktu motor dalam keadaan jalan
>atur kecepatan, pembalikan arah putaran
>kontrol waktu penghentian motor
Pembagian sistem konrol :
>pengontrolan tangan (manual)
Katanya sih motor dikontrol langsung dengan tangan , menjalankan dan menghentikan motor hanya dengan saklar start dan stop.
>Kontrol semi otomatis
Pengertiannya kontrol mempunyai kontaktor magnit dan tombol tekan yg dilengkapi dengan kontrol perlindungan.. Start atau memulai dan mengakhiri proses dengan memakai tangan. Bedanya dengan manual dia mempunyai kontaktor magnit yg berguna untuk penyaluran tenaga.
>Kontrol otomatis
Dilakukan dengan kontrol oleh satu atau lebih alat kontrol otomatis, dimana start – stop dilakukan manual atau dengan alat bantu kontrol. Misal : saklar tekan batas (bahasa kerennya limit switch), saklar penunda waktu (katenye sih TDR = Time Delay Relay).
Pengaman
Ceritanya adanya pengaman ini sih karena adanya arus mengalir dalam penghantar sehingga menimbulkan panas, agar suhu penghantar tidak terlalu tinggi arus harus dibatasi sehinga menggunakan pengaman.
Pengaman gunanya untuk :
>mengamankan hantaran, aparatur dan motor listrik terhadap beban lebih.
>Pengaman terhadap hubung singkat antar fasa atau anatr fasa n netral terhadap hubung singkat dalam aparatur atau motor listrik
>Untuk pengaman hubung singkat dengan badan mesin atau aparatur.
Jenis – jenis pengaman itu kalo diliat sih terbagi 3 jenis :
>sekring
gunanya untuk pengaman bila terjadi hubung singkat, katenye penggunaan cuma sekali jadi kalo terjadi hubung singkat akan langsung putus a.k.a rusak. Sebenarya sih sekring diliat berdasarkan warna jadi ada warna biru gunanya tuk 20 Ampere n warna – warna lainnya (sorry gak sempet dicatet).
Bagian – bagian sekring
* tudung
* patron lebar (kalo gak salah)
* pengepas
* rumah sekring
Sorry kalo salah maklum lupa (udah tua kaleeee!!!!!)
>patron pisau
kagak tau kenape dinamain kayak senjata tajem begitu tapi emang sekilas kalo diliat pake sedotan mirip pisau cukur wkwkwkwk. Gunanya sih untuk pemakaian diatas 63 Ampere jadi biasanya sih bukan dipake untuk rumahan melainkan tuk industri.

>MCB (kate temen2 sih Mini Circuit Breaker tapi ada yg bilang juga Master tapi yg lebih parah waktu saya bilang Master Cover Box kan pas tuh MCB tapi kate temen sih itu bukan kepanjangan MCB Cuma tulisan doang di boks MCB nya)
Gunanya untuk pengaman beban lebih juga sama seperti sekring tetapi dia lebih berfungsi sebagai pembatas beban yang dipakai.
Jenis MCB yang ada di pasaran yaitu :
MCB 1 fasa (banyak di perumahan)
MCB 3 fasa (banyak di industri)
MCB sih kalo gak salah di sebut juga pengaman otomatis. Pengaman otomatis dapat dibagi 3 jenis berdasarkan proses pemutusan :
otomat L (untuk hantaran)
bila terjadi beban lebih maka elemen dwi logam memutus arus, tetapi kalo terjadi hubung singkat pengaman elektromagnetik yg memutuskan rangkaian. Untuk sumber AC 4 ln – 6 ln, DC 8 ln. Waktu 0,2 sekon.
otomat H (instalasi rumah)
secara thermis sama dengan H. Sumber AC 2,5 ln – 3 ln, DC 4 ln. Waktu 0,2 sekon.
otomat G
pengaman motor listrik kecil baik AC/DC, rangkaian akhir yg besar tuk penerangan. Sumber AC 8 ln – 11 ln, DC 14 ln.
Aturan penggunaan kabel berdasarkan warna :
R/L1 : merah
S/L2 : kuning
T/L3 : hitam
0 : biru
Pentanahan : kuning – hijau
Gambar nya sih pengen semua diperliatkan tapi sayang masih belum sempet mungkin pada saat posting selanjutnya karena masih ada 23 kali pertemuan lagi jadi diharapkan sih semua hal ini berguna bagi saya sendiri dan juga orang lain.

Generator AC DC

Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu:
1. Generator penguat terpisah
2. Generator shunt
3. Generator kompon

1. Konstruksi Generator DC

Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar 1 menunjukkan gambar potongan melintang konstruksi generator DC.


Gambar 1. Konstruksi Generator DC

Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor.

Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang.

2. Prinsip kerja Generator DC

Pembangkitan tegangan induksi oleh sebuah generator diperoleh melalui dua cara:

• dengan menggunakan cincin-seret, menghasilkan tegangan induksi bolak-balik.
• dengan menggunakan komutator, menghasilkan tegangan DC.

Proses pembangkitan tegangan tegangan induksi tersebut dapat dilihat pada Gambar 2 dan Gambar 3.


Gambar 2. Pembangkitan Tegangan Induksi.

Jika rotor diputar dalam pengaruh medan magnet, maka akan terjadi perpotongan medan magnet oleh lilitan kawat pada rotor. Hal ini akan menimbulkan tegangan induksi. Tegangan induksi terbesar terjadi saat rotor menempati posisi seperti Gambar 2 (a) dan (c). Pada posisi ini terjadi perpotongan medan magnet secara maksimum oleh penghantar. Sedangkan posisi jangkar pada Gambar 2.(b), akan menghasilkan tegangan induksi nol. Hal ini karena tidak adanya perpotongan medan magnet dengan penghantar pada jangkar atau rotor. Daerah medan ini disebut daerah netral.


Gambar 3. Tegangan Rotor yang dihasilkan melalui cincin-seret dan komutator.

Jika ujung belitan rotor dihubungkan dengan slip-ring berupa dua cincin (disebut juga dengan cincin seret), seperti ditunjukkan Gambar 3.(1), maka dihasilkan listrik AC (arus bolak-balik) berbentuk sinusoidal. Bila ujung belitan rotor dihubungkan dengan komutator satu cincin Gambar 3.(2) dengan dua belahan, maka dihasilkan listrik DC dengan dua gelombang positip.

• Rotor dari generator DC akan menghasilkan tegangan induksi bolak-balik. Sebuah komutator berfungsi sebagai penyearah tegangan AC.

• Besarnya tegangan yang dihasilkan oleh sebuah generator DC, sebanding dengan banyaknya putaran dan besarnya arus eksitasi (arus penguat medan).

3. Jangkar Generator DC

Jangkar adalah tempat lilitan pada rotor yang berbentuk silinder beralur. Belitan tersebut merupakan tempat terbentuknya tegangan induksi. Pada umumnya jangkar terbuat dari bahan yang kuat mempunyai sifat feromagnetik dengan permiabilitas yang cukup besar.
Permiabilitas yang besar diperlukan agar lilitan jangkar terletak pada derah yang induksi magnetnya besar, sehingga tegangan induksi yang ditimbulkan juga besar. Belitan jangkar terdiri dari beberapa kumparan yang dipasang di dalam alur jangkar. Tiap-tiap kumparan terdiri dari lilitan kawat atau lilitan batang.


Gambar 4. Jangkar Generator DC.

4. Reaksi Jangkar

Fluks magnet yang ditimbulkan oleh kutub-kutub utama dari sebuah generator saat tanpa beban disebut Fluks Medan Utama (Gambar 5). Fluks ini memotong lilitan jangkar sehingga timbul tegangan induksi.


Gambar 5. Medan Eksitasi Generator DC

Bila generator dibebani maka pada penghantar jangkar timbul arus jangkar. Arus jangkar ini menyebabkan timbulnya fluks pada penghantar jangkar tersebut dan biasa disebut FIuks Medan Jangkar (Gambar 6).


Gambar 6. Medan Jangkar dari Generator DC (a) dan Reaksi Jangkar (b).

Munculnya medan jangkar akan memperlemah medan utama yang terletak disebelah kiri kutub utara, dan akan memperkuat medan utama yang terletak di sebelah kanan kutub utara. Pengaruh adanya interaksi antara medan utama dan medan jangkar ini disebut reaksi jangkar. Reaksi jangkar ini mengakibatkan medan utama tidak tegak lurus pada garis netral n, tetapi bergeser sebesar sudut α. Dengan kata lain, garis netral akan bergeser. Pergeseran garis netral akan melemahkan tegangan nominal generator.
Untuk mengembalikan garis netral ke posisi awal, dipasangkan medan magnet bantu (interpole atau kutub bantu), seperti ditunjukkan pada Gambar 7.(a).


Gambar 7. Generator dengan Kutub Bantu (a) dan Generator Kutub Utama, Kutub Bantu, Belitan Kompensasi (b).

Lilitan magnet bantu berupa kutub magnet yang ukuran fisiknya lebih kecil dari kutub utama. Dengan bergesernya garis netral, maka sikat yang diletakkan pada permukaan komutator dan tepat terletak pada garis netral n juga akan bergeser. Jika sikat dipertahankan pada posisi semula (garis netral), maka akan timbul percikan bunga api, dan ini sangat berpotensi menimbulkan kebakaran atau bahaya lainnya. Oleh karena itu, sikat juga harus digeser sesuai dengan pergeseran garis netral. Bila sikat tidak digeser maka komutasi akan jelek, sebab sikat terhubung dengan penghantar yang mengandung tegangan. Reaksi jangkar ini dapat juga diatasi dengan kompensasi yang dipasangkan pada kaki kutub utama baik pada lilitan kutub utara maupun kutub selatan, seperti ditunjukkan pada gambar 7 (a) dan (b), generator dengan komutator dan lilitan kompensasinya.

Kini dalam rangkaian generator DC memiliki tiga lilitan magnet, yaitu:
• lilitan magnet utama
• lilitan magnet bantu (interpole)
• lilitan magnet kompensasi

5. Jenis-Jenis Generator DC

Seperti telah disebutkan diawal, bahwa generator DC berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker) dibagi menjadi 3 jenis, yaitu:
1. Generator penguat terpisah
2. Generator shunt
3. Generator kompon

Generator Penguat Terpisah

Pada generator penguat terpisah, belitan eksitasi (penguat eksitasi) tidak terhubung menjadi satu dengan rotor. Terdapat dua jenis generator penguat terpisah, yaitu:
1. Penguat elektromagnetik (Gambar 8.a)
2. Magnet permanent / magnet tetap (Gambar 8.b)


Gambar 8. Generator Penguat Terpisah.

Energi listrik yang dihasilkan oleh penguat elektromagnet dapat diatur melalui pengaturan tegangan eksitasi. Pengaturan dapat dilakukan secara elektronik atau magnetik. Generator ini bekerja dengan catu daya DC dari luar yang dimasukkan melalui belitan F1-F2.

Penguat dengan magnet permanen menghasilkan tegangan output generator yang konstan dari terminal rotor A1-A2. Karakteristik tegangan V relatif konstan dan tegangan akan menurun sedikit ketika arus beban I dinaikkan mendekati harga nominalnya.

Karakteristik Generator Penguat Terpisah


Gambar 9. Karakteristik Generator Penguat Terpisah

Gambar 9 menunjukkan:
a. karakteristik generator penguat terpisah saat eksitasi penuh (Ie 100%) dan saat eksitasi setengah penuh (Ie 50%). Ie adalah arus eksitasi, I adalah arus beban.Tegangan output generator akan sedikit turun jika arus beban semakin besar.
b. Kerugian tegangan akibat reaksi jangkar.
c. Perurunan tegangan akibat resistansi jangkar dan reaksi jangkar, selanjutnya mengakibatkan turunnya pasokan arus penguat ke medan magnet, sehingga tegangan induksi menjadi kecil.

Generator Shunt

Pada generator shunt, penguat eksitasi E1-E2 terhubung paralel dengan rotor (A1-A2). Tegangan awal generator diperoleh dari magnet sisa yang terdapat pada medan magnet
stator. Rotor berputar dalam medan magnet yang lemah, dihasilkan tegangan yang akan memperkuat medan magnet stator, sampai dicapai tegangan nominalnya. Pengaturan arus eksitasi yang melewati belitan shunt E1-E2 diatur oleh tahanan geser. Makin besar arus eksitasi shunt, makin besar medan penguat shunt yang dihasilkan, dan tegangan terminal meningkat sampai mencapai tegangan nominalnya. Diagram rangkaian generator shunt dapat dilihat pada Gambar 10.


Gambar 10. Diagram Rangkaian Generator Shunt

Jika generator shunt tidak mendapatkan arus eksitasi, maka sisa megnetisasi tidak akan ada, atau jika belitan eksitasi salah sambung atau jika arah putaran terbalik, atau rotor terhubung-singkat, maka tidak akan ada tegangan atau energi listrik yang dihasilkan oleh generator tersebut.

Karakteristik Generator Shunt


Gambar 11. Karakteristik Generator Shunt.

Generator shunt mempunyai karakteristik seperti ditunjukkan pada Gambar 11. Tegangan output akan turun lebih banyak untuk kenaikan arus beban yang sama, dibandingkan dengan tegangan output pada generator penguat terpisah.

Sebagai sumber tegangan, karakteristik dari generator penguat terpisah dan generator shunt tentu kurang baik, karena seharusnya sebuah generator mempunyai tegangan output yang konstan, namun hal ini dapat diperbaiki pada generator kompon.

Generator Kompon

Generator kompon mempunyai dua penguat eksitasi pada inti kutub utama yang sama. Satu penguat eksitasi merupakan penguat shunt, dan lainnya merupakan penguat seri. Diagram rangkaian generator kompon ditunjukkan pada Gambar 12. Pengatur medan magnet (D1-D2) terletak di depan belitan shunt.


Gambar 12. Diagram Rangkaian Generator Kompon

Karakteristik Generator Kompon


Gambar 13. Karakteristik Generator Kompon

Gambar 13 menunjukkan karakteristik generator kompon. Tegangan output generator terlihat konstan dengan pertambahan arus beban, baik pada arus eksitasi penuh maupun eksitasi 50%. Hal ini disebabkan oleh adanya penguatan lilitan seri, yang cenderung naik tegangannya jika arus beban bertambah besar. Jadi ini merupakan kompensasi dari generator shunt, yang cenderung tegangannya akan turun jika arus bebannya naik.

Motor Listrik

Motor Listrik
ada artikel “klasifikasi mesin listrik”, Motor listrik termasuk kedalam kategori mesin listrik dinamis dan merupakan sebuah perangkat elektromagnetik yang mengubah energi listrik menjadi energi mekanik. Energi mekanik ini digunakan untuk, misalnya, memutar impeller pompa, fan atau blower, menggerakan kompresor, mengangkat bahan, dll di industri dan digunakan juga pada peralatan listrik rumah tangga (seperti: mixer, bor listrik,kipas angin).

Anda dapat melihat animasi prinsip kerja motor DC ini di sini.

Motor listrik kadangkala disebut “kuda kerja” nya industri, sebab diperkirakan bahwa motor-motor menggunakan sekitar 70% beban listrik total di industri.

Mekanisme kerja untuk seluruh jenis motor listrik secara umum sama (Gambar 1), yaitu:
• Arus listrik dalam medan magnet akan memberikan gaya.
• Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran/loop, maka kedua sisi loop, yaitu pada sudut kanan medan magnet, akan mendapatkan gaya pada arah yang berlawanan.
• Pasangan gaya menghasilkan tenaga putar/ torsi untuk memutar kumparan.
• Motor-motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putaran yang lebih seragam dan medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan.

Dalam memahami sebuah motor listrik, penting untuk mengerti apa yang dimaksud dengan beban motor. Beban mengacu kepada keluaran tenaga putar/torsi sesuai dengan kecepatan yang diperlukan. Beban umumnya dapat dikategorikan kedalam tiga kelompok:
Beban torsi konstan, adalah beban dimana permintaan keluaran energinya bervariasi dengan kecepatan operasinya, namun torsi nya tidak bervariasi. Contoh beban dengan torsi konstan adalah conveyors, rotary kilns, dan pompa displacement konstan.
Beban dengan torsi variabel, adalah beban dengan torsi yang bervariasi dengan kecepatan operasi. Contoh beban dengan torsi variabel adalah pompa sentrifugal dan fan (torsi bervariasi sebagai kwadrat kecepatan).
Beban dengan energi konstan, adalah beban dengan permintaan torsi yang berubah dan berbanding terbalik dengan kecepatan. Contoh untuk beban dengan daya konstan adalah peralatan-peralatan mesin.


Gambar 1. Prinsip Dasar Kerja Motor Listrik.

JENIS MOTOR LISTRIK

Bagian ini menjelaskan tentang dua jenis utama motor listrik: motor DC dan motor AC. Motor tersebut diklasifikasikan berdasarkan pasokan input, konstruksi, dan mekanisme operasi, dan dijelaskan lebih lanjut dalam bagan dibawah ini.


Gambar 2. Klasifikasi Motor Listrik.

1. Motor DC/Arus Searah
Motor DC/arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/direct-unidirectional. Motor DC digunakan pada penggunaan khusus dimana diperlukan penyalaan torsi yang tinggi atau percepatan yang tetap untuk kisaran kecepatan yang luas.
Gambar 3 memperlihatkan sebuah motor DC yang memiliki tiga komponen utama:
Kutub medan. Secara sederhada digambarkan bahwa interaksi dua kutub magnet akan menyebabkan perputaran pada motor DC. Motor DC memiliki kutub medan yang stasioner dan dinamo yang menggerakan bearing pada ruang diantara kutub medan. Motor DC sederhana memiliki dua kutub medan: kutub utara dan kutub selatan. Garis magnetik energi membesar melintasi bukaan diantara kutub-kutub dari utara ke selatan. Untuk motor yang lebih besar atau lebih komplek terdapat satu atau lebih elektromagnet. Elektromagnet menerima listrik dari sumber daya dari luar sebagai penyedia struktur medan.
Dinamo. Bila arus masuk menuju dinamo, maka arus ini akan menjadi elektromagnet. Dinamo yang berbentuk silinder, dihubungkan ke as penggerak untuk menggerakan beban. Untuk kasus motor DC yang kecil, dinamo berputar dalam medan magnet yang dibentuk oleh kutub-kutub, sampai kutub utara dan selatan magnet berganti lokasi. Jika hal ini terjadi, arusnya berbalik untuk merubah kutub-kutub utara dan selatan dinamo.
Kommutator. Komponen ini terutama ditemukan dalam motor DC. Kegunaannya adalah untuk membalikan arah arus listrik dalam dinamo. Kommutator juga membantu dalam transmisi arus antara dinamo dan sumber daya.


Gambar 3. Motor DC.

Keuntungan utama motor DC adalah kecepatannya mudah dikendalikan dan tidak mempengaruhi kualitas pasokan daya. Motor DC ini dapat dikendalikan dengan mengatur:
Tegangan dinamo – meningkatkan tegangan dinamo akan meningkatkan kecepatan.
Arus medan – menurunkan arus medan akan meningkatkan kecepatan.

Motor DC tersedia dalam banyak ukuran, namun penggunaannya pada umumnya dibatasi untuk beberapa penggunaan berkecepatan rendah, penggunaan daya rendah hingga sedang, seperti peralatan mesin dan rolling mills, sebab sering terjadi masalah dengan perubahan arah arus listrik mekanis pada ukuran yang lebih besar. Juga, motor tersebut dibatasi hanya untuk penggunaan di area yang bersih dan tidak berbahaya sebab resiko percikan api pada sikatnya. Motor DC juga relatif mahal dibanding motor AC.

Hubungan antara kecepatan, flux medan dan tegangan dinamo ditunjukkan dalam persamaan berikut:

Gaya elektromagnetik: E = KΦN

Torsi: T = KΦIa

Dimana:
E =gaya elektromagnetik yang dikembangkan pada terminal dinamo (volt)
Φ = flux medan yang berbanding lurus dengan arus medan
N = kecepatan dalam RPM (putaran per menit)
T = torsi electromagnetik
Ia = arus dinamo
K = konstanta persamaan

Jenis-Jenis Motor DC/Arus Searah

a. Motor DC sumber daya terpisah/ Separately Excited, Jika arus medan dipasok dari sumber terpisah maka disebut motor DC sumber daya terpisah/separately excited.

b. Motor DC sumber daya sendiri/ Self Excited: motor shunt. Pada motor shunt, gulungan medan (medan shunt) disambungkan secara paralel dengan gulungan dinamo (A) seperti diperlihatkan dalam gambar 4. Oleh karena itu total arus dalam jalur merupakan penjumlahan arus medan dan arus dinamo.

Gambar 4. Karakteristik Motor DC Shunt.

Berikut tentang kecepatan motor shunt (E.T.E., 1997):
• Kecepatan pada prakteknya konstan tidak tergantung pada beban (hingga torsi tertentu setelah kecepatannya berkurang, lihat Gambar 4) dan oleh karena itu cocok untuk penggunaan komersial dengan beban awal yang rendah, seperti peralatan mesin.
• Kecepatan dapat dikendalikan dengan cara memasang tahanan dalam susunan seri dengan dinamo (kecepatan berkurang) atau dengan memasang tahanan pada arus medan (kecepatan bertambah).

c. Motor DC daya sendiri: motor seri. Dalam motor seri, gulungan medan (medan shunt) dihubungkan secara seri dengan gulungan dinamo (A) seperti ditunjukkan dalam gambar 5. Oleh karena itu, arus medan sama dengan arus dinamo.

Berikut tentang kecepatan motor seri (Rodwell International Corporation, 1997; L.M. Photonics Ltd, 2002):
• Kecepatan dibatasi pada 5000 RPM.
• Harus dihindarkan menjalankan motor seri tanpa ada beban sebab motor akan mempercepat tanpa terkendali.
Motor-motor seri cocok untuk penggunaan yang memerlukan torque penyalaan awal yang tinggi, seperti derek dan alat pengangkat hoist (lihat Gambar 5).

Gambar 5. Karakteristik Motor DC Seri.

d. Motor DC Kompon/Gabungan.
Motor Kompon DC merupakan gabungan motor seri dan shunt. Pada motor kompon, gulungan medan (medan shunt) dihubungkan secara paralel dan seri dengan gulungan dinamo (A) seperti yang ditunjukkan dalam gambar 6. Sehingga, motor kompon memiliki torque penyalaan awal yang bagus dan kecepatan yang stabil. Makin tinggi persentase penggabungan (yakni persentase gulungan medan yang dihubungkan secara seri), makin tinggi pula torque penyalaan awal yang dapat ditangani oleh motor ini. Contoh, penggabungan 40-50% menjadikan motor ini cocok untuk alat pengangkat hoist dan derek, sedangkan motor kompon yang standar (12%) tidak cocok (myElectrical, 2005).

Gambar 6. Karakteristik Motor DC Kompon.

2. Motor AC/Arus Bolak-Balik

Motor AC/arus bolak-balik menggunakan arus listrik yang membalikkan arahnya secara teratur pada rentang waktu tertentu. Motor listrik AC memiliki dua buah bagian dasar listrik: "stator" dan "rotor" seperti ditunjukkan dalam Gambar 7.

Stator merupakan komponen listrik statis. Rotor merupakan komponen listrik berputar untuk memutar as motor. Keuntungan utama motor DC terhadap motor AC adalah bahwa kecepatan motor AC lebih sulit dikendalikan. Untuk mengatasi kerugian ini, motor AC dapat dilengkapi dengan penggerak frekwensi variabel untuk meningkatkan kendali kecepatan sekaligus menurunkan dayanya. Motor induksi merupakan motor yang paling populer di industri karena kehandalannya dan lebih mudah perawatannya. Motor induksi AC cukup murah (harganya setengah atau kurang dari harga sebuah motor DC) dan juga memberikan rasio daya terhadap berat yang cukup tinggi (sekitar dua kali motor DC).

Jenis-Jenis Motor AC/Arus Bolak-Balik

a. Motor sinkron. Motor sinkron adalah motor AC yang bekerja pada kecepatan tetap pada sistim frekwensi tertentu. Motor ini memerlukan arus searah (DC) untuk pembangkitan daya dan memiliki torque awal yang rendah, dan oleh karena itu motor sinkron cocok untuk penggunaan awal dengan beban rendah, seperti kompresor udara, perubahan frekwensi dan generator motor. Motor sinkron mampu untuk memperbaiki faktor daya sistim, sehingga sering digunakan pada sistim yang menggunakan banyak listrik.

Komponen utama motor sinkron adalah (Gambar 7):
Rotor. Perbedaan utama antara motor sinkron dengan motor induksi adalah bahwa rotor mesin sinkron berjalan pada kecepatan yang sama dengan perputaran medan magnet. Hal ini memungkinkan sebab medan magnit rotor tidak lagi terinduksi. Rotor memiliki magnet permanen atau arus DC-excited, yang dipaksa untuk mengunci pada posisi tertentu bila dihadapkan dengan medan magnet lainnya.
Stator. Stator menghasilkan medan magnet berputar yang sebanding dengan frekwensi yang dipasok.

Motor ini berputar pada kecepatan sinkron, yang diberikan oleh persamaan berikut (Parekh, 2003):

Ns = 120 f / P

Dimana:
f = frekwensi dari pasokan frekwensi
P= jumlah kutub

Gambar 7. Motor Sinkron.

b. Motor induksi. Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah dan mudah didapat, dan dapat langsung disambungkan ke sumber daya AC.

Komponen Motor induksi memiliki dua komponen listrik utama (Gambar 8):
Rotor. Motor induksi menggunakan dua jenis rotor:
- Rotor kandang tupai terdiri dari batang penghantar tebal yang dilekatkan dalam petak-petak slots paralel. Batang-batang tersebut diberi hubungan pendek pada kedua ujungnya dengan alat cincin hubungan pendek.
- Lingkaran rotor yang memiliki gulungan tiga fase, lapisan ganda dan terdistribusi. Dibuat melingkar sebanyak kutub stator. Tiga fase digulungi kawat pada bagian dalamnya dan ujung yang lainnya dihubungkan ke cincin kecil yang dipasang pada batang as dengan sikat yang menempel padanya.
Stator. Stator dibuat dari sejumlah stampings dengan slots untuk membawa gulungan tiga fase. Gulungan ini dilingkarkan untuk sejumlah kutub yang tertentu. Gulungan diberi spasi geometri sebesar 120 derajat .

Klasifikasi motor induksi

Motor induksi dapat diklasifikasikan menjadi dua kelompok utama (Parekh, 2003):
Motor induksi satu fase. Motor ini hanya memiliki satu gulungan stator, beroperasi dengan pasokan daya satu fase, memiliki sebuah rotor kandang tupai, dan memerlukan sebuah alat untuk menghidupkan motornya. Sejauh ini motor ini merupakan jenis motor yang paling umum digunakan dalam peralatan rumah tangga, seperti kipas angin, mesin cuci dan pengering pakaian, dan untuk penggunaan hingga 3 sampai 4 Hp.
Motor induksi tiga fase. Medan magnet yang berputar dihasilkan oleh pasokan tiga fase yang seimbang. Motor tersebut memiliki kemampuan daya yang tinggi, dapat memiliki kandang tupai atau gulungan rotor (walaupun 90% memiliki rotor kandang tupai); dan penyalaan sendiri. Diperkirakan bahwa sekitar 70% motor di industri menggunakan jenis ini, sebagai contoh, pompa, kompresor, belt conveyor, jaringan listrik , dan grinder. Tersedia dalam ukuran 1/3 hingga ratusan Hp.

Gambar 8. Motor Induksi.

Kecepatan motor induksi

Motor induksi bekerja sebagai berikut, Listrik dipasok ke stator yang akan menghasilkan medan magnet. Medan magnet ini bergerak dengan kecepatan sinkron disekitar rotor. Arus rotor menghasilkan medan magnet kedua, yang berusaha untuk melawan medan magnet stator, yang menyebabkan rotor berputar. Walaupun begitu, didalam prakteknya motor tidak pernah bekerja pada kecepatan sinkron namun pada “kecepatan dasar” yang lebih rendah. Terjadinya perbedaan antara dua kecepatan tersebut disebabkan adanya “slip/geseran” yang meningkat dengan meningkatnya beban. Slip hanya terjadi pada motor induksi. Untuk menghindari slip dapat dipasang sebuah cincin geser/ slip ring, dan motor tersebut dinamakan “motor cincin geser/slip ring motor”.

Persamaan berikut dapat digunakan untuk menghitung persentase slip/geseran(Parekh, 2003):

% Slip = (Ns – Nb)/Ns x 100

Dimana:
Ns = kecepatan sinkron dalam RPM
Nb = kecepatan dasar dalam RPM

Hubungan antara beban, kecepatan dan torsi


Gambar 9. Grafik Torsi vs Kecepatan Motor Induksi.

Gambar 9 menunjukan grafik torsi vs kecepatan motor induksi AC tiga fase dengan arus yang sudah ditetapkan. Bila motor (Parekh, 2003):
• Mulai menyala ternyata terdapat arus nyala awal yang tinggi dan torsi yang rendah (“pull-up torque”).
• Mencapai 80% kecepatan penuh, torsi berada pada tingkat tertinggi (“pull-out torque”) dan arus mulai turun.
• Pada kecepatan penuh, atau kecepatan sinkron, arus torsi dan stator turun ke nol.

Selasa, 02 Maret 2010

Materi Jurusan

Selasa, Agustus 11, 2009
Materi Elektro : Definisi & Struktur Kapasitor Kondensator
By - Muhammad Alfiansyah . Selasa, Agustus 11, 2009
Label: Kapasitor,
Tutorial


Kapasitor - Sudah banyak arikel yang menjelaskan mengenai apa itu kapasitor, bagaimana cara kerja kapasitor dan macam macam kapasitor. Oleh karena itu saya disini hanya menulis untuk sekedar review saja mengenai apa itu kapasitor. Adapun materi yang saya tulis kali ini banyak bersumber dari blog blog blogger lain, dengan sedikit penambahan dari saya.
Definisi & Pengertian Kapasitor / Kondensator
Kapasitor atau yang dapat disebut juga sebagai kondensator adalah suatu jenis komponen Rangkaian listrik pasif yang dapat menyimpan energi dalam bentuk medan listrik sebagai akibat dari pengumpulan ketidakseimbangan internal dari muatan listrik
Sejarah Kapasitor / Kondensator
Kapasitor ditemukan oleh penemu kapasitor ( Goblok lu, kita juga tau ) yang bernama Michael Faraday ( 1791 - 1867 ) dan untuk mengenang jasanya maka satuan Kapasitor disebut "Farad" yang berasal dari nama sang penemu. Pernahkah terlintas dibenak anda " Kok dinamai Kondesator?? " mengapa kapasitor sampai mempunyai nama lain kondensator?? adalah karena pada masa itu pada tahun 1782 dunia masih kuat akan pengaruh dari ilmuan kimiawi lainnya yaitu Alessandro Volta, yang berkebangsaan itali. Dimana pada masa tersebut segala komponen yang berkenaan dengan kemampuan untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya ia sebut dengan nama Condensatore ( Bahasa Itali ).
Simbol Kapasitor / Kondensator

Adalah simbol dari kapaitor non polar yang biasanya nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju.

Adalah Simbol dari kapasitor polar elektrolit yang mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.
Struktur Dari Kapasitor / Kondensator

Struktur dari sebuah kapasitor / kondensator terdiri dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrikum. Bahan-bahan dielektrikum antara lain : udara vakum, keramik, gelas dan lain-lain. saat kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki (elektroda) metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif, karena terpisah oleh bahan dielektrik yang non-konduktif. Muatan elektrik ini "tersimpan" selama tidak ada konduksi pada ujung-ujung kakinya. Di alam bebas, phenomena kapasitor ini terjadi pada saat terkumpulnya muatan-muatan positif & negatif di awan.